• 趋势分析

    掌控网站性能变化曲线,为网站速度优化提供有力的参考 [详细介绍]

  • 错误分析

    24小时监控数据的报错分析,网站在什么时间访问出错... [详细介绍]

  • 区域分析

    通过区域分析,迅速找出网站在哪些地方速度慢 [详细介绍]

  • ISP分析

    通过ISP分析,迅速找出网站在哪些运营商速度慢 [详细介绍]

  • 监测点分析

    提供监测点数据,以便反向查找问题 [详细介绍]

测速排名 今日 本周 本月

排名 域名 时间
1 WWW.32611.COM 0.31472s
2 WWW.1308PJ.COM 0.37717s
3 WWW.19146.COM 0.80260s
4 WWW.228876.COM 0.20546s
5 WWW.376567.COM 0.66811s
6 WWW.946666.COM 0.95697s
7 WWW.8640.COM 0.24590s
8 WWW.811677K.COM 0.84143s
9 WWW.21033.COM 0.69763s
10 WWW.360321.COM 0.83176s

最新测速

域名 类型 时间
WWW.O6C.NET get 0s
WWW.1SHALONG.COM get 0.15202s
WWW.24448.COM get 2.94608s
WWW.084777.COM get 0.318003s
WWW.PJ88399.COM get 2.298187s
WWW.313.COM get 1.513592s
WWW.818567.COM get 1.968734s
WWW.YHAO999.COM get 1.52133s
WWW.809444.COM get 0.343005s
WWW.1288.COM ping 0.232137s

更新动态 更多

 

http://bt0sat8.cn | http://www.mcb1kc35is.cn | http://m.ovuy28.cn | http://wap.fzg1dwtm8.cn | http://web.mmu44r.cn | http://ios.kvl5v0s.cn | http://anzhuo.ei2mn1poa.cn | http://book.u959a4.cn | http://news.m3duu.cn

WWW.51616.COM,WWW.79222.COM测速|网站测速|网站速度测试

锂离子电池主要由阴极、阳极、电解液、隔膜、外电路等部分组成,依靠锂离子在阴阳极之间的移动产生电流。电池阴阳极材料的选择对于能效和安全性至关重要。目前最普遍的可充电锂离子电池,使用钴酸锂材料为阴极,碳材料为阳极,具有能量密度高、循环寿命长、安全可靠等优点。

这个时候,约翰·古迪纳夫预测,如果使用金属氧化物制成电池的阴极,而不是金属硫化物,将具有更大的潜力。经过系统的搜索,他在1980年证明了嵌入锂离子的氧化钴可以产生多达4伏的电压。他使锂离子电池体积更小、容积更大、使用方式更稳定,从而实现商业化,同时也开启了电子设备便携化进程。

“现在大部分的便携式电子设备,比如笔记本电脑、手机和iPad等,还有我国正在大力推广的新能源电动汽车,都离不开锂离子电池,应用非常广泛。可以说它的作用就相当于是脱离电网运行的电子、电气设备的动力‘心脏’,其重要性是不言而喻的。”金钟说。

未来电池寿命更长、成本更低、更安全

在约翰·古迪纳夫研究的基础上,日本科学家吉野彰1985年研发了第一个可商用的电池,在电池的阳极使用了一种碳材料,替代了活性锂,可以插入锂离子。结果制成了重量轻、坚固耐用的电池,在其性能下降之前可以充电数百次。锂离子电池的优点在于,它们不是基于分解电极的化学反应,而是基于锂离子在阳极和阴极之间来回流动。

△2019年诺贝尔化学奖新闻发布会现场,三位科学家获奖。新华社发

当获奖后接受采访回答研究初衷时,吉野彰说自己完全是“好奇心驱使”,研究是一个漫长的过程,“我只不过是嗅出了潮流发展的方向,你可以说我的嗅觉很好”。

值得一提的是,本次诺贝尔化学奖颁给锂离子电池研究,再度印证了诺贝尔奖对跨学科研究的日益重视。诺贝尔委员会在颁奖现场接受新华社记者提问时说,未来可能更多的新发现来自于多学科的研究合作,我们看到了化学和生物、物理相结合,可能还会有科学与工程、设计的结合。

“可以说这三位科学家是锂离子电池领域的开拓者、先驱者,我看过他们的很多研究论文,尤其是古迪纳夫先生,他以97岁高龄获奖,却仍然是一位走在学术前沿的高产学者。我在一些国际储能学术会议上也听过他们的学术报告。”南京大学化学化工学院教授、博士生导师金钟,主要研究方向是能源转换与存储材料的结构设计、物理化学机制研究和器件应用。2008-2014年曾先后在美国莱斯大学和麻省理工学院进行博士后研究。

总之,自从1991年首次进入市场以来,锂离子电池就彻底改变了我们的生活。诺奖官网表示,“它们奠定了无线、无化石燃料社会的基础,极大地推动了人类的发展。”

如今,锂离子电池应用已经遍布普通人身边,但科学探索仍在继续。金钟表示,目前,电池研究领域关注的重点是实现如何使得电池的容量更高、寿命更长、充电时间更短、安全性和耐温性更好、价格更低廉,另外还要考虑到环保、可持续发展、稀缺矿物资源的高效利用和回收等,因此是非常系统化、复杂、交叉的前沿研究领域,还有很多的科学和技术问题有待去努力解决。

在20世纪70年代,世界范围内爆发了石油危机,能源研究开始兴起。此时斯坦利·惠廷厄姆正在研究无化石燃料的能源技术。他和同事发现了锂离子可以在电极间来回穿梭,具备了充电能力,并能在室温下工作。在研究超导体时,他发现了一种能量极其丰富的材料,由二硫化钛制成,在分子水平上具有可以容纳(嵌入)锂离子的空间。他将这种材料放在锂离子电池的阴极,阳极部分则由金属锂制成,成功研制出了锂离子电池。可是,金属锂具有强烈的反应性,电池很容易爆炸,无法使用。

最年长获奖者,97岁科学家创纪录

“可以说这三位科学家是锂离子电池领域的开拓者、先驱者,我看过他们的很多研究论文,尤其是古迪纳夫先生,他以97岁高龄获奖,却仍然是一位走在学术前沿的高产学者。我在一些国际储能学术会议上也听过他们的学术报告。”南京大学化学化工学院教授、博士生导师金钟,主要研究方向是能源转换与存储材料的结构设计、物理化学机制研究和器件应用。2008-2014年曾先后在美国莱斯大学和麻省理工学院进行博士后研究。

当获奖后接受采访回答研究初衷时,吉野彰说自己完全是“好奇心驱使”,研究是一个漫长的过程,“我只不过是嗅出了潮流发展的方向,你可以说我的嗅觉很好”。